Abstract

In this paper, pristine and chemically treated multi-walled carbon nanotubes (MWCNTs) were employed as solid-phase extraction sorbents for the isolation and enrichment of multi-class pharmaceuticals from the surface water and groundwater, prior to liquid chromatography-tandem mass spectrometry analysis. Thirteen pharmaceuticals that belong to different therapeutical classes (erythromycin, azithromycin, sulfamethoxazole, diazepam, lorazepam, carbamazepine, metoprolol, bisoprolol, enalapril, cilazapril, simvastatin, clopidogrel, diclofenac) and two metabolites of metamizole (4-acetylaminoantipyrine and 4-formylaminoantipyrine) were selected for this study. The influence of chemical treatment on MWCNT surface characteristics and extraction efficiency was studied, and it was shown that HCl treatment of MWCNT leads to a decrease in the amount of surface oxygen groups and at the same time favorably affects the efficiency toward extraction of selected pharmaceuticals. After the optimization of the SPE procedure, the following conditions were chosen: 50mg of HCl-treated MCWNT as a sorbent, 100mL of water sample at pH6, and 15mL of the methanol-dichloromethane mixture (1:1, v/v) as eluent. Under optimal conditions, high recoveries (79-119%), as well as low detection (0.2 to 103ngL-1) and quantitation (0.5-345ngL-1) limits, were obtained. The optimized method was applied to the analysis of five surface water and two groundwater samples, and three pharmaceuticals were detected, the antiepileptic drug carbamazepine and two metabolites of antipyretic metamizole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.