Abstract
Water-soluble ammonium polyphosphate (APP) has the advantages of good solubility and slow-release characteristics and has the potential to be used in combination with monoammonium phosphate (MAP) as a high phosphorus content slow-release fertilizer to improve the utilization rate of phosphorus during irrigation. Herein, the effects of the APP1 concentration and temperature (278.2–313.2 K) on the solubility of MAP, solution density, and pH value in the ternary equilibrium system (APP1–MAP–water) were measured. The simplified Apelblat model, two empirical polynomials, and rational two-dimensional functions can describe the experimental solubility data, solution density, and pH value well, respectively, with reliable modeling parameters (R2 > 0.99). In the OptiMax1001 reactor, the focused beam reflectance measurement (FBRM), the particle-view measurement (PVM), and the ReactIR 15 probes were used to observe and reverse verify that they can be synergistically codissolved to achieve economic efficiency. Basic thermodynamic data and models can guide their collaborative application in irrigation to improve the phosphorus utilization rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.