Abstract
AbstractMonoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) are impurities in biodiesel and a major cause of precipitation. Understanding the behavior of such acylglycerols is essential for predicting biodiesel cold flow properties (CFPs). The previous study on MAG/MAG binary mixtures shows that they tend to solidify by forming molecular compounds. In contrast, TAG/TAG mixtures, which have been studied extensively, are commonly eutectic or monotectic systems, in which each component solidifies separately. The present study focuses on binary mixtures of DAG/DAG and different acylglycerol pairs (MAG/DAG, TAG/MAG, and DAG/TAG), and determination of their solid–liquid phase behavior by differential scanning calorimetry. These mixtures are found to behave as eutectic or monotectic systems with no sign of compound formation. As DAG and TAG have lower contents than MAG in biodiesel and they are unlikely to form molecular compounds with MAG, it is suggested that DAG and TAG have little effect on the biodiesel CFPs.Practical Applications: Biodiesel has attracted much interest because its blending with conventional fossil diesel has become more standard with biofuel mandates. From an energy perspective, the solid–liquid phase behavior of acylglycerols will contribute to building prediction models for biodiesel CFPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.