Abstract

Molecular dynamics simulations are reported for the solid-liquid coexistence properties of n-6 Lennard-Jones fluids, where n=12, 11, 10, 9, 8, and 7. The complete phase behavior for these systems has been obtained by combining these data with vapor-liquid simulations. The influence of n on the solid-liquid coexistence region is compared using relative density difference and miscibility gap calculations. Analytical expressions for the coexistence pressure, liquid, and solid densities as a function of temperature have been determined, which accurately reproduce the molecular simulation data. The triple point temperature, pressure, and liquid and solid densities are estimated. The triple point temperature and pressure scale with respect to 1/n, resulting in simple linear relationships that can be used to determine the pressure and temperature for the limiting infinity-6 Lennard-Jones potential. The simulation data are used to obtain parameters for the Raveche, Mountain, and Streett and Lindemann melting rules, which indicate that they are obeyed by the n-6 Lennard Jones potentials. In contrast, it is demonstrated that the Hansen-Verlet freezing rule is not valid for n-6 Lennard-Jones potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.