Abstract
Solid-like behavior at low energies and long distances is usually associated with the spontaneous breaking of spatial translations at microscopic scales, as in the case of a lattice of atoms. We exhibit three quantum field theories that are renormalizable, Poincaré invariant, and weakly coupled, and that admit states that on the one hand are perfectly homogeneous down to arbitrarily short scales, and on the other hand have the same infrared dynamics as isotropic solids. All three examples presented here lead to the same peculiar solid at low energies, featuring very constrained interactions and transverse phonons that always propagate at the speed of light. In particular, they violate the well known {c}_L^2>frac{4}{3}{c}_T^2 bound, thus showing that it is possible to have a healthy renormalizable theory that at low energies exhibits a negative bulk modulus (we discuss how the associated instabilities are absent in the presence of suitable boundary conditions). We do not know whether such peculiarities are unavoidable features of large scale solid-like behavior in the absence of short scale inhomogeneities, or whether they simply reflect the limits of our imagination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.