Abstract

Abstract The variety of configurations for vertical-axis wind turbines (VAWTs) make the development of universal scaling relationships for even basic performance parameters difficult. Rotor geometry changes can be characterized using the concept of solidity, defined as the ratio of solid rotor area to the swept area. However, few studies have explored the effect of this parameter at full-scale conditions due to the challenge of matching both the non-dimensional rotational rate (or tip speed ratio) and scale (or Reynolds number) in conventional wind tunnels. In this study, experiments were conducted on a VAWT model using a specialized compressed-air wind tunnel where the density can be increased to over 200 times atmospheric air. The number of blades on the model was altered to explore how solidity affects performance while keeping other geometric parameters, such as the ratio of blade chord to rotor radius, the same. These data were collected at conditions relevant to the field-scale VAWT but in the controlled environment of the lab. For the three highest solidity rotors (using the most blades), performance was found to depend similarly on the Reynolds number, despite changes in rotational effects. This result has direct implications for the modelling and design of high-solidity field-scale VAWTs.

Highlights

  • There has been renewed interest in the aerodynamics of vertical-axis wind turbines (VAWTs), as they may have advantages over the more commonly used horizontal-axis wind turbines (HAWTs) when mounted on floating platforms offshore, as well as in niche markets not served by commercially available HAWTs

  • Even when inflow conditions are steady, each blade experiences highly unsteady loads during every rotation cycle due to the large changes in the local angle of attack. This implies that many dynamic effects, which are not present during typical HAWT operation, affect the VAWT

  • The results demonstrated that Reynolds number invariance for VAWTs is possible in a laboratory setting using small-scale models of field relevant geometries

Read more

Summary

Introduction

There has been renewed interest in the aerodynamics of vertical-axis wind turbines (VAWTs), as they may have advantages over the more commonly used horizontal-axis wind turbines (HAWTs) when mounted on floating platforms offshore, as well as in niche markets not served by commercially available HAWTs (see e.g. Bhutta et al, 2012; Dabiri, 2011; Griffith et al, 2018; Miller et al, 2018). One of the primary reasons that VAWT designs have remained less popular in the marketplace is the increased difficulty associated with modelling the performance of these units, which often results in overengineering or durability issues. Even when inflow conditions are steady, each blade experiences highly unsteady loads during every rotation cycle due to the large changes in the local angle of attack. This implies that many dynamic effects, which are not present during typical HAWT operation, affect the VAWT. In addition to considering these complex aerodynamics, many design decisions must be made regarding the geometrical features of the VAWT. A parameter which has historically been used to characterize the VAWT geometry in a single non-dimensional number is the solidity, which is the ratio of the open to closed area swept by the rotor: σs

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call