Abstract

Excimer laser crystallization (ELC) is commonly employed to fabricate low-temperature polycrystalline silicon. A time-resolved in-situ optical system with nanosecond response time is developed to monitor and record the phase transformation process during ELC. The average solidification velocity of liquid silicon (liquid Si) is investigated from the optical spectra recorded by a fast oscilloscope. It is found that the average solidification velocities of liquid Si in the partial-melting and complete-melting regimes are fundamentally different. In the partial-melting regime, the average solidification velocity decreases with increasing excimer laser energy density; while in the complete-melting regime, it increases abruptly due to the presence of deeply supercooled liquid Si.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call