Abstract

Arsenic-alkali residue (AAR) and MSWI fly ash (MFA) are hazardous wastes, which still lack effective treatment methods. In this study, a novel solidification/stabilization (S/S) method for AAR with MFA-based cementitious material (MFA-CM) containing Friedel’s salt was proposed. The efficiency and mechanism of S/S was mainly focused. Abundant Friedel’s salt as well as a few C-S-H gel and ettringite (AFt) were found as hydration products of MFA-CM. 12% of AAR was well solidified/stabilized by MFA-CM, accompanied by As leaching concentration reducing from 10,687 mg/L to less than 5 mg/L. In order to investigate S/S mechanism of As, removal mechanism of As during co-precipitation synthesis of Friedel’s salt was studied. During co-precipitation process, As was successively removed by formation of calcium arsenate precipitates, formation of As-Friedel’s salt (replacement of Cl- by AsO43-), and adsorption of Friedel’s salt. The S/S mechanism of As by MFA-CM was found to be similar to the removal mechanism of As during co-precipitation. With the prolonging of curing time, As was mainly solidified/stabilized by formation of calcium arsenate precipitates and As-Friedel’s salt, and adsorption of Friedel’s salt. Thus, this study provides a novel harmless treatment method for highly toxic arsenic-containing wastes by “treating the wastes with wastes”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call