Abstract

This study investigated the solidification/stabilization of fly ash containing heavy metals using the Portland cement as a binder. It is found that both the cement/fly ash ratio and curing time have significant effects on the mechanical (i.e., compressive strength) and leaching behaviors of the stabilized fly ash mixtures. When the cement/fly ash ratio increases from 4 : 6 to 8 : 2, the increase of compressive strength ratio raises from 42.24% to 80.36%; meanwhile, the leaching amount of heavy metals decreases by 2.33% to 85.23%. When the curing time increases from 3 days to 56 days, the compressive strength ratio of mixtures raises from 240.00% to 414.29%; meanwhile, the leaching amount of heavy metals decreases by 16.49% to 88.70%. The decrease of compressive strength with the lower cement/fly ash ratios and less curing time can be attributed to the increase of fly ash loading, which hinders the formation of ettringite and destroys the structure of hydration products, thereby resulting in the pozzolanic reaction and fixation of water molecules. Furthermore, the presence of cement causes the decrease of leaching, which results from the formation of ettringite and the restriction of heavy metal ion migration in many forms, such as C-S-H gel and adsorption.

Highlights

  • Incineration, as an effective method to energy recovery and reduction of the volume and weight of waste, has been widely adopted for the treatment of solid waste around the world [1, 2]

  • Compressive strength test and TCLP test were conducted on the cement-stabilized fly ash

  • According to the compressive strength test results, the compressive strength of the mixtures grew with the increase of cement/fly ash ratio and curing time

Read more

Summary

Introduction

Incineration, as an effective method to energy recovery and reduction of the volume and weight of waste, has been widely adopted for the treatment of solid waste around the world [1, 2]. According to the Eurostat yearbook, the incineration percentages of solid waste in Germany and France were as high as 32% [3]. Heavy metals in the waste were accumulated through absorption by fly ash along the evaporation of the water and the decrease in waste volume, and the concentration of heavy metals eventually reaches a relative high level. Fly ash is regarded as hazardous waste in Code 19.01.13 of the Council of the European Union and has to be pretreated according to ASTM STP 1123 and 40 CFR 261.24 [1, 6,7,8]. According to Choi et al and Song et al.’s research, cement can be utilized as a binder to effectively reduce the leachability

Materials and Methods
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.