Abstract
In this work, we present phase-field (PF) simulations directly coupled to thermodynamic and kinetic databases in three dimensions. The direct coupling allows consideration of the full alloy complexity of the CMSX-4 superalloy over a large range of temperatures. The simulation conditions are chosen for additive manufacturing utilizing Electron Beam Melting (EBM). Transformation of interdendritic liquid into eutectic γ′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma '$$\\end{document} is considered. The simulation results confirm the unique segregation behavior of all the alloying elements. It is demonstrated that the treatment of the full complexity of alloy composition is superior to all approximations with quasi-binary or -ternary approximation and justifies the significantly increased computational effort. Our results demonstrate that multi-component simulations must become a standard for phase-field applications to real material systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.