Abstract

High resolution time-resolved X-ray imaging with synchrotron radiation was used for in situ observation of four distinct events during solidification of a Sn-0.7Cu-0.15Zn solder despite small composition and density differences. These included βSn dendrite growth, Sn-Cu6Sn5 univariant eutectic growth, microporosity formation, and a polyphase reaction in the last stages of freezing. The development of microstructure was described quantitatively by tracking the loci of dendrite tips during grain growth. The results have implications for microstructure control and the understanding of structure–property relationships in Sn-Cu-Zn lead-free solders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.