Abstract

Alkali-activation is effective municipal solid waste incineration fly ash (MSWIFA) solidification/stabilization (S/S) technology. Percolation and migration of heavy metals in MSWIFA S/S matrix is a complicated and slow process. Here, several alkali-activated MSWIFA samples are selected to comparatively investigate the long-term leaching behavior and environmental availability of Pb, Zn and Cd when exposed in different erosion environment. Acid environment posed the more serious destroy to MSWIFA S/S matrices. RAC demonstrated that potential risk level of heavy metals is higher in acid rain environment, and Cd, Zn showed the prominent risk. When soaked in acid rain solution, the surface of alkali-activated MSWIFA S/S matrices was cracked seriously and a large number of hardened slurry peeled off. However, more stable structural properties and lower heavy metal leachability can be found in alkali-activated MSWIFA/aluminosilicate. The immobilization efficiency of Pb, Zn and Cd were all above 99.0%. Microstructure and morphology results indicated that there is new phase Friedel's salts generated and much more amorphous substance such as C-(A)-S-H gel with incorporation of aluminosilicate, which all contributed much to the formation of compact and stable microstructure, then significantly facilitated the encapsulation of heavy metal. These findings will provide theoretical basis and new insight for resource utilization and security landfill of MSWIFA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.