Abstract

Ionic liquids (ILs) have become an important class of solvents and soft materials over the past decades. Despite being salts built by discrete cations and anions, many of them are liquid at room temperature and below. They have been used in a wide variety of applications such as electrochemistry, separation science, chemical synthesis and catalysis, for breaking azeotropes, as thermal fluids, lubricants and additives, for gas storage, for cellulose processing, and photovoltaics. It has been realized that the true advantage of ILs is their modular character. Each specific cation–anion combination is characterized by a unique, characteristic set of chemical and physical properties. Although ILs have been known for roughly a century, they are still a novel class of compounds to exploit due to the vast number of possible ion combinations and one fundamental question remains still inadequately answered: why do certain salts like ILs have such a low melting point and do not crystallize readily? This Review aims to give an insight into the liquid–solid phase transition of ILs from the viewpoint of a solid-state chemist and hopes to contribute to a better understanding of this intriguing class of compounds. It will introduce the fundamental theories of liquid–solid-phase transition and crystallization from melt and solution. Aside form the formation of ideal crystals the development of solid phases with disorder and of lower order like plastic crystals and liquid crystals by ionic liquid compounds are addressed. The formation of ionic liquid glasses is discussed and finally practical techniques, strategies and methods for crystallization of ionic liquids are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.