Abstract

The solidification of undercooled Ni-4.5 wt pct B alloy melt was investigated by using the glass fluxing technique. The alloy melt was undercooled up to ΔTp ~ 245 K (245 °C), where a mixture of α-Ni dendrite, Ni3B dendrite, rod eutectic, and precipitates was obtained. If ΔTp < 175 K ± 10 K (175 °C ± 10 °C), the solidification pathway was found as primary transformation and eutectic transformation (L → Ni3B and L → Ni/Ni3B); if ΔTp ≥ 175 K ± 10 K (175 °C ± 10 °C), the pathway was found as metastable eutectic transformation, metastable phase decomposition, and residual liquid solidification (L → Ni/Ni23B6, Ni23B6 → Ni/Ni3B, and Lr → Ni/Ni3B). A high-speed video system was adopted to observe the solidification front of each transformation. It showed that for residual liquid solidification, the solidification front velocity is the same magnitude as that for eutectic transformation, but is an order of magnitude larger than for metastable eutectic transformation, which confirms the reaction as Lr → Ni/Ni3B; it also showed that this velocity decreases with increasing ΔTr, which can be explained by reduction of the residual liquid fraction and decrease of Ni23B6 decomposition rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.