Abstract

In this study, high-entropy alloys (HEAs) with Cu as the main constituent element were investigated, focusing on the distribution of Cu in the ingots. Based on the taxonomy of HEAs, those with Cu as the casting material were classified as (1) HEAs whose main constituent elements were 3d transition metals, such as Co, Cr, Fe, Mn, Ni, and Cu (3d-HEAs), and (2) high-entropy (HE) brasses based on the Cu-Zn alloy system and HE bronzes based on Cu-Sn and/or Cu-Al alloy systems. In the case of 3d-HEAs with Cu, the distribution of Cu in the ingots exhibited the following tendency: (1-1) segregation from the dendrite to the residual liquid, resulting in the formation of Cu-rich interdendritic regions in the ingots; (1-2) liquid-phase separation resulting in the formation of a Cu-rich liquid, which formed a macroscopically phase-separated structure; and (1-3) the dispersion of fine Cu precipitates embedded in the solid solution matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call