Abstract

The influence of Nb addition on casting microstructures and high-temperature mechanical properties of Fe-Mn-C-Al-xNb TWIP steels was analyzed by phase-field modeling and experiments. Phase-field simulations showed that Mn, Nb, and C are enriched in inter-dendritic regions while Al is enriched in dendritic regions during solidification process of the investigated TWIP steels. Both phase-field simulations and microstructural characterization show that NbC precipitates are preferentially present near inter-dendritic boundaries. Nb addition slightly reduces hot ductility of the investigated steel at 1173 K (900 °C) while the Nb-added TWIP steels show better hot-ductility than the reference steel for deformation temperatures above 1373 K (1100 °C). NbC precipitates and inter-dendritic distances appear to be the most important variables that affect hot-ductility behavior of the investigated TWIP steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.