Abstract

During the U-type hot cracking test of gas tungsten arc welding (GTAW), water was flowed onto the back side of 310S stainless steel (water-cooled GTAW) to prevent solidification cracking. To investigate the prevention of solidification cracking, the relationship between the thermal strain curve and high temperature ductility curve was determined. A finite element simulation model was designed to obtain the thermal strain curve. The high-temperature ductility curve was obtained based on a combination of the solidification initiation and completion temperatures, in addition to the critical strain rate. The solidification initiation and completion temperatures were calculated using a supercooling model and segregation model, respectively. The critical strain rate was measured based on an in-situ observation method. The high-temperature ductility curves were constant under both welding conditions. The thermal strain curve of GTAW intersected the high-temperature ductility curve, thus resulting in solidification cracking. However, in the water-cooled GTAW, the decreased thermal strain curve did not intersect with the high-temperature ductility curve, and solidification cracking did not occur. In the water-cooled welding process, the thermal strain and stress of the weld bead decreased due to an increase in the yield strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.