Abstract
ABSTRACTA hypereutectic Al-40wt%Ni alloy has been manufactured by melt spinning, and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypereutectic Al-40wt%Ni consists of an Ni aluminide matrix and an A1-rich phase distributed in the form of particles with sizes ∼ 50-100 nm, and as an irregular layer at the cell and grain boundaries. Diffraction analysis of the Ni aluminide matrix is consistent with the ASTM x-ray diffraction standard 2θ values for the orthorhombic NiAl3 phase, a=6.6114 Å, b=7.3662 Å andc=4.8112 Å. The solidification nucleation kinetics of Al-rich particles have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Solidification of the Al-rich phase at the cell and grain boundaries nucleates catalytically on the surrounding Ni aluminide matrix at an undercooling of ∼ 3 K. Analysis of the solidification nucleation kinetics of the Al-rich phase in Al-40wt%Ni supports the hypothesis [1-4] that the classical spherical cap model of heterogeneous nucleation breaks down at low undercoolings and small contact angles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.