Abstract

To clarify the solidification behavior of Re- and Ru-containing Ni-based single-crystal superalloys, four experimental alloys with varied contents of Re and Ru were investigated by differential scanning calorimetry (DSC) and metallographic techniques. To obtain the γ′-solvus temperatures, the stepwise solution and aging heat treatments were used. DSC analysis shows that Re leads to the increase in freezing range and γ′-solvus temperature. On the contrast, Ru only has negligible influence on the freezing range, but leads to the lower γ′-solvus temperature. In comparison with Ru, Re leads to more severe segregation and higher eutectic fractions in as-cast microstructures. Furthermore, the castability and phase stability of Ni-based superalloys were analyzed by the results of DSC and metallographic analysis, such as freezing range, critical nucleation temperature, γ′-solvus temperature and eutectic fractions. It shows that Re leads to the wider freezing range and lower critical nucleation temperature, indicating the worse castability of Re-containing Ni-based single-crystal superalloys. The characteristic phase transformation temperatures of Re-containing single-crystal superalloy are determined by DSC analysis. For as-cast samples, the liquidus, solidus, critical nucleation and eutectic reaction temperature are clearly shown in DSC curves. After a stepwise solution and aging heat treatments, the higher amount of γ′ phase with cubic morphology can be obtained. Finally, the precipitation temperature of γ′ phase is determined by DSC analysis for the heat-treated samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.