Abstract

This paper addresses solidification and solid state precipitation phenomena during transient liquid phase (TLP) bonding of wrought IN718 nickel base superalloy using Ni–4.5Si–3.2B (wt.%) ternary filler alloy. The solidification sequence of the residual liquid in the joint centerline was found to be (1) formation of proeutectic γ, followed by (2) γ/Ni3B eutectic reaction, followed by (3) ternary eutectic of γ/Ni3B/Ni6Si2B. Extensive fine Ni3Si formed within the eutectic-γ via solid state precipitation during cooling. Extensive Cr–Mo–Nb rich boride precipitates were formed in the substrate region due to boron diffusion into the base metal during bonding process. The implications of the phase transformations on the mechanical properties, corrosion resistance and aging behavior of the joint, which are pertinent to the development of an optimum post bond heat treatment, are highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.