Abstract

In the industrial fabrication processes of density-graded closed-cell metallic foams, it is of great importance to control the solidification immediately after foams are formed so as to obtain the final products with well distributed density-graded pores and less defects. This paper presented an analytical work aiming to predict the solidification front of density-graded metallic foam under constant temperature boundary condition. Numerical simulations based on ideal density-graded circular pores demonstrated good agreement with the analytical solutions. The 2D porous morphology of a real density-graded aluminum foam was further reconstructed with microCT, on the basis of which the propagation of solidification front inside this real density-graded foam was numerically investigated. An equivalent shape factor for this real foam was calculated to provide an insight for the influence of different pore shapes on solidification. Compared with other pores, the solidification speed of elliptical pores (a common pore shape in real foams) is moderate, i.e., slower than circular pores but quicker than triangular pores for same porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.