Abstract

Manufacturing high-quality casting parts with complex geometries requires high engineering skill and precision. One essential quality concern is isolated hot spots within the castings, often in thick sections. Each hot spot must be consistently fed or mitigated through directional solidification techniques. The impact of various mold sands and the geometry of chill parts on solidification direction was investigated using specialized casting and general-purpose simulation programs. A parametric optimization method was employed to analyze directional solidification to adjust the geometry of the chill parts. The results indicate that employing diverse mold sands to enhance cooling in the thick sections was a viable strategy for achieving directional solidification in parts where the feeding pathway is obstructed due to changes in cross-section. Furthermore, the study revealed that intricate details in the chill part’s geometry are not critical; however, a minimum volume (or weight) was necessary for adequate directional solidification. Lastly, an easily applicable mathematical model has been developed to determine the required volume of chill parts to ensure successful directional solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.