Abstract

A 47-membered library of novel long-chain arylpiperazines, which contained cyclic amino acid amides in the terminal fragment (pyrrolidine-2-carboxamide and 1,2,3,4-tetrahydroisoquinoline-3-carboxamide), was synthesized on Rink-amide resin and biologically evaluated for binding affinity for 5-HT7 and 5-HT1A receptors. Surprisingly, members of the designed series containing piperidine-2-carboxamide fragments underwent hydrolysis, which occurred during the acidic treatment for release from the solid-support, to their respective pipecolic acid analogs. Representative compounds from the library displayed high-to-low affinity for 5-HT7 (Ki = 18–3134 nM) and 5-HT1A (Ki = 0.5–6307 nM) sites. The possible interactions implicated in binding of the studied compounds to the 5-HT7 receptor were supported by molecular modeling. Research was also applied to support the exploration of the influence of the amide fragment, the length of alkylene spacer, and arylpiperazine substituents on the receptor's affinity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.