Abstract
Gassmann fluid substitution is widely used in geophysical practice. In the last few years, the topic of fluid/solid substitution has emerged, where the substances filling the pore space can be solids, fluids, or visco-elastic materials, such as heavy oils. Solid substitution cannot be accomplished with the Gassmann theory because the finite rigidity of the pore fill (either solid or viscoelastic) prevents pressure communication throughout the pore space, which is a key assumption of the Gassmann theory. In this paper we explore applicability of solid substitution techniques by using a sandstone saturated with a solid substance, octodecane. This substance is a hydrocarbon with a melting point of 28°C, making it convenient to use in the lab in both solid and fluid form. Our approach is to measure a dry sandstone sample under different confining pressure, then saturate it with liquid Octodecane at 35°C and measure again. After that, we cool it to 20-25°C and carry out the measurement once more. The dry properties can be used to obtain parameters necessary for fluid and solid substitution. The results show that moduli of the dry sandstone exhibit significant pressure dependency, which is reduced for the solid filled rock. Also the prediction of the Gassmann theory and Ciz and Shapiro theory underestimate the velocities. This suggests that stiffening occurs due to substantial reduction of compliance of grain contacts by the solid infill. This effect is accounted for by the solid squirt theory. The results give direct evidence of the solid squirt effect and can be used to verify and calibrate theoretical solutions for rocks saturated with solid or viscoelastic substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.