Abstract

For the first time, to our knowledge, an all-solid transverse Anderson localizing optical fiber laser is demonstrated. A combination of the molten core and stack-and-draw fiber fabrication techniques is used to produce a 112 µm core diameter fiber that is a random array of Yb-doped high index and passive low index regions. A localized channel first assists in the guidance of amplified spontaneous emission before stimulating laser action, which occurs in the same channel via mixed Anderson localization and step index wave-guiding. Threshold behavior and lasing are monitored with changing output power slopes, beam profiling, spectral content, fluorescence clamping, and temporal intensity. The average output power is stable, while the laser wavelength hops between 1066 and 1088 nm. Lasing is highly directional along the fiber axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.