Abstract
A single-crystal X-ray diffraction study of the effect of cooling down to 100 K on the β-form of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, has revealed reversible phase transitions at ∼257 K and between 150 and 125 K: β (Pbcn, Z' = 1) ⇔ β(II) (P2/c, Z' = 2) ⇔ β(III) (P2/n, a' = 2a, Z' = 4); the sequence corresponds to cooling. Despite changes in the space group and number of symmetry-independent molecules, the volume per molecule changes continuously in the temperature range 100-300 K. The phase transition at ∼257 K is accompanied by non-merohedral twinning, which is preserved on further cooling and through the second phase transition, but the original single crystal does not crack. DSC (differential scanning calorimetry) and X-ray powder diffraction investigations confirm the phase transitions. Twinning disappears on heating as the reverse transformations take place. The second phase transition is related to a change in conformation of the alkyl tail from trans to gauche in 1/4 of the molecules, regularly distributed in the space. Possible reasons for the increase in Z' upon cooling are discussed in comparison to other reported examples of processes (crystallization, phase transitions) in which organic crystals with Z' > 1 have been formed. Implications for pharmaceutical applications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section B Structural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.