Abstract

Three dimensional (3D) plasmonic nanostructures composed of silver nanoparticles decorated ZnO NRs arrays, have been fabricated by a process combining the electrochemical growth of ZnO NRs and further formation of Ag nanoparticles by the solid-state thermal dewetting (SSD) process. The effect of SSD parameters on the morphological, structural and optical properties of the Ag NPs decorated ZnO NRs arrays has been investigated. It is possible to tune the bandgap of the Ag NPs@ZnO nanorods array 3D plasmonic nanostructure by tailoring the Ag nanoparticle sizes, allowing light manipulation at the nanoscale. The silver nanoparticles attached to the ZnO NRs arrays experienced surface plasmonic coupling effect, causing enhancement in the room temperature photoluminescence (PL) UV emission and quenching the corresponding visible light one. An enhancement in the near band edge emission PL intensity of ZnO to the deep level emission PL intensity ratio after Ag NPs decoration of the ZnO nanostructures corresponding to ca. 11 folds has been observed, indicating that the defect emission is obviously suppressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.