Abstract
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic–organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4–10 nm), large pore volumes (up to 0.96 cm3 g−1) and high-surface areas exceeding 1,000 m2 g−1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm).
Highlights
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents
The soft-templating method has significantly enhanced the chemistry of OMCs in the past decade, the key crosslinking reaction remains limited to the acid- or base-catalysed polycondensation of toxic phenol-formaldehyde using large amount of solvents
The applicability of an OMC support could be tremendously enhanced if metal nanoparticles (NPs) could be in situ confined inside the pores to create a dream catalyst—restricting the growth and aggregation of metal NPs, minimizing metal loss and enabling even large reactants to undergo rapid mass transfer during heterogeneous catalysis[31,32]
Summary
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Compared with wet phenol-formaldehyde polycondensation, the essence of mechanochemical coordination polymerization relies on three features: (1) the coordination polymerization can be completed by ball milling, or in other words, the solventfree crosslinking is restricted in a specific space—void of mesophase micelles; (2) the metal-salt linkers can in situ become stable metal NPs within the pores of the OMC; (3) the solid-state polymerization can exploit monomers with no or poor solubility in solvents, a vital issue that often makes solution self-assembly fail
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.