Abstract

The crystal structures of the complexes formed by reaction of thorium(IV) nitrate with iminodiacetic acid (H(2)IDA), nitrilotriacetic acid (H(3)NTA), and ethylenediaminetetraacetic acid (H(4)EDTA) under hydrothermal conditions are reported. In [Th(HIDA)(2)(C(2)O(4))]·H(2)O (1), the metal atom is chelated by two carboxylate groups from two HIDA(-) anions and by two oxalate ligands formed in situ; two additional oxygen atoms from two more HIDA(-) anions complete the ten-coordinate environment of bicapped square antiprismatic geometry. The uncoordinated nitrogen atom is protonated and involved in hydrogen bonding. Two different ligands are present in [Th(NTA)(H(2)NTA)(H(2)O)]·H(2)O (2), one of them being a O(3),N-chelating trianion which acts also as a bridge toward two neighboring metal ions, and the other being a bis-monodentate bridging species with an uncoordinated carboxylic arm and a central ammonium group. An aqua ligand completes the nine-coordinated, capped square antiprismatic metal environment. The EDTA(4-) anion in [Th(EDTA)(H(2)O)]·2H(2)O (3) is chelating through one oxygen atom from each carboxylate group and the two nitrogen atoms, as in a previously reported molecular complex. Two carboxylate groups are bridging, which, with the addition of an aqua ligand, gives a capped square antiprismatic coordination polyhedron. Aminopolycarboxylate ligands have been much investigated in relation with actinide decorporation and nuclear wastes management studies, and the present results add to the structural information available on their complexes with thorium(IV), which has mainly been obtained up to now by extended X-ray absorption fine structure (EXAFS) spectroscopy. In particular, the bridging (non-chelating) coordination mode of H(2)NTA(-) is a novel feature in this context. All three complexes crystallize as two-dimensional assemblies and are thus novel examples of thorium-organic coordination polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.