Abstract
Protonated carbonyl compounds have been invoked as intermediates in many acid-catalyzed organic reactions. To gain key structural and electronic data about such intermediates, oxonium salts derived from five representative examples of ketones and aldehydes are synthesized in the solid state, and characterized by X-ray crystallography and Raman spectroscopy for the first time. DFT calculations were carried out on the cations in the gas phase. Whereas an equimolar reaction of the carbonyl compounds, acetone, cyclopentanone, adamantanone, and acetaldehyde, with SbF5 in anhydrous HF yielded mononuclear oxonium cations, the same stoichiometry in a reaction with benzaldehyde resulted in formation of a hemiprotonated, hydrogen-bridged dimeric cation. Hemiprotonated acetaldehyde was obtained when a 2:1 ratio of aldehyde and SbF5 was used. Experimental and NBO analyses quantify the significant increase in electrophilicity of the oxonium cations compared to that of the parent ketones/aldehydes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.