Abstract

In our ongoing investigations of heteropolyniobate chemistry, a phase featuring decorated, A-type trivacant alpha-Keggin ions linked by their charge-balancing sodium cations has been isolated and structurally characterized. This is the first heteropolyniobate reported that has a true lacunary structure type. Na15[(PO2)3PNb9O34] x 22 H2O (1) [triclinic space group P1 (No. 2); a = 12.242 (2) A, b = 12.291 (3) A, c = 22.056 (4) A; alpha = 93.12 (3) degrees, beta = 99.78 (3) degrees, gamma = 119.84 (3) degrees; Z = 4, V = 2799.2 (10) A3] is composed of bilayers of the heteropolyanions alternating with layers of hydrated Na+ cations. Sodium cations also bridge the clusters within their layers through Na-O(t)-Nb, Na-O(b)-Nb2, and Na-O(t)-P bonds (t = terminal and b = bridging). This phase is poorly soluble in water, suggesting that it is more characteristic of a framework of linked heteropolyanions rather than a water-soluble heteropolyanion salt. Two-dimensional solid-state 23Na multiple-quantum magic angle spinning (MAS) NMR of 1 reveals five distinctive chemical and structural environments for sodium, which agrees with the crystallographic data. The 23Na and 1H MAS NMR studies further illustrate the rigid and immobile nature of this framework of cations and anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.