Abstract
This paper presents an efficient, low-cost, and versatile LED-based solar simulator intended to produce a well-characterized spectrum for tests of solar cells and other photosensitive devices. Three major design aspects are addressed: LED spectra, power converters for LED drive, and control. The visible light of a standard solar spectrum is simulated using six LED colors. The number of LEDs and their placement for uniformity are addressed. Boost converters under current-mode control are used to achieve reproducible LED brightness through adjustable currents, or equivalent radiant-flux commands. The independent control of the six colors can simulate a range of different light sources and solar spectra. Uniformity tests verify that the system achieves standard spectral uniformity requirements over an area of 100 mm × 100 mm in simulations and 100 mm × 50 mm in experiments. LEDs in the proposed simulator consume less power and reduce the simulator size compared to the available state of the art. The user-friendly interface also allows active control of the simulated spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.