Abstract
YFeO3/g-C3N4 composites with varying weight ratios were prepared following three different methods The optimum weight ratio and the method of preparation for enhanced visible photocatalytic activity towards the degradation of organic contaminants were identified. The successful formation of the composites was proven by XRD and IR measurements. XPS analysis shows that the inactive Y2O3 passive layer on the hexagonal YFeO3 (h-YFeO3) disappeared during the composite formation, resulting in a direct and intimate contact of h-YFeO3/g-C3N4 which is crucial for the photocatalytic activities. The loading of h-YFeO3 varied from 1 to 20% and the highest activity was achieved at 2.4%. At the optimum loading 80% degradation of methyl orange (MO) was obtained under 5 h visible light illumination. The composite photocatalyst shows also modest activity for the photodegrading of 4-chlorophenol (4-CP). Additionally the synthesized composites were characterized by high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflection UV–vis spectroscopy (DR-UV–vis). In order to determine the relative band positions of the composite photocatalysts their flat band potentials were estimated from Mott-Schottky analysis. Improved charge separation in the composite is mainly responsible for the enhanced photoactivity and supported by photoluminescence experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.