Abstract
Summary A historical survey of the development of solid-state detectors is given, and it is shown why semiconductor detectors are superior to the earlier crystal counters. The physical processes which occur during the detection of nuclear radiation in a solid-state device are considered in detail, and the merits of the reverse-biased semiconductor junction in silicon or germanium are set out. Factors which determine the energy resolution of such a detector are analysed, and also the effects of radiation damage. The preparation of such detectors is not treated in detail, but the physical principles on which the important types of detector depend are described. The final section surveys the field of applications of solid-state detectors in nuclear physics, radiochemical analysis, space research, medicine and biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.