Abstract

Building quantum computers requires not only a large number of qubits with high fidelity and low variability, but also a large amount of analog and digital components to drive the qubits. Larger arrays of solid-state qubits with high fidelity and low variability require improvements in fabrication processes and array layout design co-optimized with the underlying hardware technology. Here we outline progress on 300mm fabrication of qubit devices and on classical CMOS components to enable the quantum system. We describe work on superconducting qubits and spin qubits in Si, both types of devices fabricated on 300mm experimental platforms and discuss challenges related to variability. Massive electrical characterization is key over wide temperature range is key to enabling system upscaling for QC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.