Abstract

A new proton-conductive composite of NH 4PO 3–(NH 4) 2Mn(PO 3) 4 was synthesized and characterized as a potential electrolyte for intermediate temperature fuel cells that operated around 250 °C. Thermal gravimetric analysis and X-ray diffraction investigation showed that (NH 4) 2Mn(PO 3) 4 was stable as a supporting matrix for NH 4PO 3. The composite conductivity, measured using impedance spectroscopy, improved with increasing the molar ratio of NH 4PO 3 in both dry and wet atmospheres. A conductivity of 7 mS cm −1 was obtained at 250 °C in wet hydrogen. Electromotive forces measured by hydrogen concentration cells showed that the composite was nearly a pure protonic conductor with hydrogen partial pressure in the range of 10 2–10 5 Pa. The proton transference number was determined to be 0.95 at 250 °C for 2NH 4PO 3–(NH 4) 2Mn(PO 3) 4 electrolyte. Fuel cells using 2NH 4PO 3–(NH 4) 2Mn(PO 3) 4 as an electrolyte and the Pt–C catalyst as an electrode were fabricated. Maximum power density of 16.8 mW/cm 2 was achieved at 250 °C with dry hydrogen and dry oxygen as the fuel and oxidant, respectively. However, the NH 4PO 3–(NH 4) 2Mn(PO 3) 4 electrolyte is not compatible with the Pt–C catalyst, indicating that it is critical to develop new electrode materials for the intermediate temperature fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.