Abstract

The inherently weak mechanical properties associated with monolithic high-temperature superconductors (HTS) can be improved by introducing properly selected strong ceramic whiskers into the HTS materials. In this research, processing and superconducting properties of monolithic Pb-doped Bi-2223 (BPSCCO) and MgO whisker-reinforced BPSCCO HTS composite materials have been systematically studied. A solid-state processing method is successfully developed to fabricate the (MgO)w/BPSCCO composite. The HTS composite contains a dense and highly pure BPSCCO matrix phase with a preferred grain orientation, which is reinforced by MgO whiskers randomly oriented in the plane perpendicular to the hot-pressing direction. The HTS composite material is shown to exhibit excellent superconducting properties. For example, a transport Jc measured at 77 K in a zero field has been obtained to exceed 5000 A/cm2 in a (MgO)w/BPSCCO composite with 10% MgO whiskers by volume. Relationships among solid-state processing variables, HTS phase development, and superconducting properties of the monolithic BPSCCO and the HTS composite are established in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call