Abstract
Engineering characterization of water has produced huge varieties of materials with special properties to meet human needs. Equilibrium properties of water-based liquids are well understood via localized atomic and molecular orbital theories. However, the mechanism of electrical conductivity of pure water has proven elusive. We show here it is trapping limited drift of positive and negative quasi-protons (or protons and proton-vacancies) on the extended water lattice, which is accounted for by the long-range correlation inherent in the Fermion (electrons and protons) and Boson (phonons) energy band theory of quasi-particles in solids, with vigorous adherence to equilibrium and nonequilibrium states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.