Abstract

The PtII isocyanide complex [Pt(ppy)Cl(CNC6H4-C≡C-Ph)] (1, Hppy=2-phenylpyridine) was co-crystallized with 1,4-diiodotetrafluorobenzene (1,4-DITFB), yielding 1·½(1,4-DITFB) adduct. The I···Cl halogen-bonding and π-π-stacking interactions combined with the rare π-hole(isocyano group)⋅⋅⋅dz2[PtII] interactions were identified via analysis of X-ray diffraction data of the co-crystals. These two types of structure-determining interactions supplemented each other, and the system of I⋯Cl and π-hole(isocyano group)⋅⋅⋅dz2[PtII] contacts achieved a 1D extended ladder-type architecture. The density functional theory calculations, employing a set of computational tools, verified the role of I⋯Cl and π-hole(isocyano group)⋅⋅⋅dz2[PtII] noncovalent bonds in the spectrum of noncovalent forces. The solid-state photophysical study revealed an amplification of luminescence intensity in the co-crystals, which is attributed to the suppression of the nonradiative relaxation pathways due to an increase in the rigidity of the chromophore center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call