Abstract

Segmented polymer networks (SPNs) based on thermo-sensitive poly(N-isopropyl acryl amide) (PNIPAA) and poly(tetrahydrofuran) (PTHF) have been synthesized by free radical copolymerization of PTHF bis-macromonomers with N-isopropyl acrylamide. The nature of the polymerizable end group on the bis-macromonomer has been varied, respectively from acrylate to acrylamide end groups. The multiphase behaviour of the corresponding SPNs has been examined as a function of the nature of the end group by making use of solid-state 13C CP/MAS NMR relaxometry, 1H wideline NMR relaxometry and dynamic mechanical analysis (DMA). When PTHF with acrylate end groups was used during the SPN formation, analysis of proton spin-lattice relaxation times (T1H) and proton spin-lattice relaxation times in the rotating frame (T1ρH) revealed phase separation with domain sizes larger than 5nm when the PTHF fraction exceeds 10wt%. Only for lower PTHF-amounts, the SPNs were homogeneous on the nanometer scale. On the other hand, when PTHF with acrylamide end groups was used as macromolecular cross-linker, the NMR results showed the absence of any domain formation for SPNs with PTHF fractions up to 50wt%. The major impact of the molecular design on the ultimate phase morphology of bicomponent polymer networks has been confirmed in all cases by DMA-analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.