Abstract

In situ solid-state NMR methodologies have been used to investigate the photocatalytic oxidation of ethanol (CH 3CH 2OH) over a series of SnO 2-based photocatalysts. The adsorption of ethanol on commercially available SnO 2 powder was studied using both cross-polarization 13C NMR and REDOR experiments, and showed the formation of two surface ethanol species, hydrogen-bonded ethanol at surface hydroxyl groups and ethanol chemisorbed to the SnO 2 surface (Sn–OCH 2CH 3). 13C NMR of the adsorbed ethanol was used to characterize the surface of monolayer SnO 2–TiO 2 coupled photocatalysts supported on porous Vycor glass. In situ solid-state NMR studies showed that the photooxidation of ethanol over the monolayer photocatalysts was slower than that over a supported TiO 2 monolayer photocatalyst due to the build-up of reaction intermediates such as acetic acid on the catalyst surface. 119Sn NMR experiments characterized the tin species on the porous Vycor glass support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.