Abstract

Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.