Abstract
ObjectivesThe aim of this study was to investigate the formation of fluoride compounds in bovine enamel and dentin treated with silver diammine fluoride (SDF) using 19F and 31P solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. MethodsEnamel and dentin powder, obtained from bovine teeth, were treated with 38% SDF for four minutes and then washed thoroughly with Milli-Q water. The dehydrated SDF-treated samples were then examined. 19F solid-state MAS NMR spectra were acquired and 1H–31P cross-polarization (CP) experiments were performed on SDF-treated enamel and dentin powder. The surfaces of SDF-treated enamel and dentin blocks were observed by Scanning Electron Microscope (SEM). Results19F MAS NMR detected a more pronounced signal intensity for the dentin sample than the enamel, indicating an increased reactivity of SDF for dentin, compared with enamel. 19F NMR spectra for the SDF-treated samples showed fluorhydroxyapatite (FHAp), and other fluoride compounds such as CaF2 and the fluoride-substituted carbonate. The 1H–31P CP intensities of prominent peaks were lower for the SDF-treated samples than the non-treated sample, indicating that the F- ion replaced the OH- ion in the lattice tunnel. SEM observations on the SDF-treated samples showed pronounced multiple precipitation and particles in dentin compared with enamel. SignificanceThe solid-state MAS NMR revealed the reaction of fluoride on enamel and dentin and the identification of fluoride compounds. In particular, the formation of FHAp indicates that SDF is effective in reducing the risk of tooth decay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.