Abstract

The sol-gel method was used to prepare two different starting gels containing SiCH3-groups for the preparation of SiOC ceramics. To understand the role of Si—H bonds in the incorporation of carbon into the SiOC network, gels prepared from a 1:2 mixture of triethoxysilane and methyldiethoxysilane (THDH2) and solely methyltriethoxysilane (TMe) were investigated. Thermogravimetric analysis coupled with mass spectroscopy (TG-MS) in inert atmosphere was performed to attain an insight into the decomposition reactions involved during gel-glass transformation. Samples calcined at different temperatures up to 1000°C were characterized by 29Si and 13C magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. The presence of SiH groups in the starting gel allows an efficient conversion of Si—CH3 groups into CSi4 sites at lower temperatures. As a result, despite a much lower amount of carbon in the starting THDH2 gel (C/Si = 0.33) compared to the TMe gel (C/Si = 1), the amount of carbon inserted into the SiOC network of both glasses is equivalent, but the TMe sample contains the 10 fold amount of free carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.