Abstract
A large number of solid-state NMR and ESR experiments were explored as potential tools to study chemical structure, mobility, and pore volume of activated carbon. We used a model system where pecan shells were activated with phosphoric acid, and carbonized at 450°C for 4h with varying amounts of air flow. Through the use of different NMR experiments (e.g., CP-MAS, SPE-MAS, and DD-MAS) several structural parameters were calculated such as mole fraction of bridgehead aromatic carbons, number of carbons per aromatic ring system, and number of phenolic carbons per aromatic ring system. The relaxation time measurements (T1, TCH, and T1ρH) were indicative of the relative mobility of different structural units. ESR spectra showed the presence of π-type aromatic free radicals in the carbonized samples with a slight shift in g value with increasing oxidation. The combined NMR and ESR data give a consistent picture of the carbon structure and the carbonization process, which is not easily available otherwise. In addition, the 1H NMR data on adsorbed water are shown to be consistent with the trends in the amount of pore volumes for different samples of activated carbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.