Abstract

Engelhard titanosilicate (ETS-10) supported cadmium sulphide (CdS) nanoparticles were synthesized and characterized by various solid state techniques including: XRD, DR UV-Vis, TEM and FESEM. The effect of different synthesis routes of CdS nanoparticles on its physicochemical character was studied. It was observed that CdS nanoparticles prepared by both in situ sulphur reduction (CdS-IS) and reverse micelle (CdS-RM) methods showed similar roperties. However, CdS-IS nanoparticles are more feasible and economically practical. The reflectance measurements of the as-synthesized CdS nanoparticles are apparently blue-shifted compared to bulk CdS. This phenomenon of blue-shifted absorption edge has been ascribed to an increase in bandgap energy with a decrease in particle sizes. The bandgap of the as-synthesized CdS samples was calculated from the linear correlation of [F(R) hν]2 and hν. The bandgap of CdS in ETS-10 was noticeably slightly reduced when compared with the as-synthesized CdS (8 nm) due to the formation of cluster arrays on the pores of ETS-10.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.