Abstract

This study investigated the effects of different classes of hydrophilic carriers (poly vinyl pyrrolidones [PVPs] [Plasdone K-25 and Plasdone S-630], cellulosic polymers [hydroxypropyl methyl cellulose and hydroxy propyl cellulose], and Sodium Alginate) on the solid state and dissolution rate of Raloxifene hydrochloride (R-HCl). Solid state characterizations of co-ground mixtures and physical mixtures in 1:1 and 1:2 ratios of drug to polymer were performed by employing laser diffractometer for particle size and differential scanning calorimetry (DSC) for solid state interactions. The results of particle size studies showed that only co-grinding with PVPs was more effective in the reduction of particle size than the milling of drug alone. DSC study indicated that the crystalline nature of the drug was reduced after co-grinding with PVPs when compared with their corresponding physical mixtures. The hydrophilic carriers other than PVPs did not reduce the crystalline nature of the drug significantly. X-ray diffraction and scanning electron microscopy were carried out for selected batches to confirm DSC results. Significant enhancement in dissolution rate and extent was observed with co-ground mixtures of drug and PVPs. Plasdone S-630 was found to be a better carrier for R-HCl in terms of achieving improvement in dissolution. In vitro dissolution data can be described by Hixson–Crowell model, indicating the drug release mechanism predominated by erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call