Abstract
Solid-state reversible hydrogen storage systems hold great promise for onboard applications. The key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodynamic properties, and fast hydriding and dehydriding kinetics. The LiNH2 + LiH system has been utilized as an example system to illustrate these critical issues that are common among other solid-state reversible storage materials. The progress made in thermodynamic destabilization and kinetic enhancements via various approaches are emphasized. The implications of these advancements in the development of future solid-state reversible hydrogen storage materials are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.