Abstract

AbstractOrganic electrochemical transistors (OECTs) have attracted significant attention due to their unique ionic–electronic charge coupling, which holds promise for use in a variety of bioelectronics. However, the typical electronic components of OECTs, such as the rigid metal electrodes and aqueous electrolytes, have limited their application in solid‐state bioelectronics that requires design flexibility and a variety of form factors. Here, the fabrication of a solid‐state homojunction OECT consisting of a pristine polymer semiconductor channel, doped polymer semiconductor electrodes, and a solid electrolyte is demonstrated. This structure combines the photo‐crosslinking of all of the electronic OECT components with the selective doping of the polymer semiconductor. Three Lewis acids (gold (III) chloride (AuCl3), iron (III) chloride (FeCl3), and copper (II) chloride (CuCl2) ) are utilized as dopants for the metallization of the polymer semiconductor. The AuCl3‐doped polymer semiconductor with an electrical conductivity of ≈100 S cm−1 is successfully employed as the source, drain, and gate electrodes for the OECT, which exhibited a high carrier mobility of 3.4 cm2 V−1 s−1 and excellent mechanical stability, with negligible degradation in device performance after 5000 cycles of folding at a radius of 0.1 mm. Homojunction OECTs are then successfully assembled to produce NOT, NAND, and NOR logic gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.