Abstract
HypothesisA new simplified procedure for encapsulation of antibacterial silver nanoparticles by Solid-state Ion Exchange (SSIE) procedure over zeolite Y, followed by deposition of sulfadiazine (SD) by dry mixing was examined for the preparation of topical antibacterial formulations. The ion-exchange and adsorptive properties of the zeolite matrix were utilized for the bactericidal Ag deposition and loading of antibiotic sulfadiazine. ExperimentsAssessment of the encapsulation efficiency of both active components loaded by solid and liquid deposition methods was made by X-ray diffraction, TEM, FT-IR spectroscopy and thermogravimetric analysis (TGA). SD release kinetics was also determined. FindingsSustained delivery of sulfadiazine has been observed from the Ag-modified zeolites compared to the parent HY material. It was found that if SD was loaded in solution, part of the zeolite silver ions was released and interacted with SD, forming AgSD. By solid-state SD deposition, the reaction between the drug and the silver was restricted within the limits of inter-atomic interaction, and total but prolonged drug release occurred.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.